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Abstract. We present the numerically determined distribution of the number of sites visited 
by thermally activated walkers on ultrametric spaces, which mimic the energetic disorder 
found in amorphous materials. At high temperatures the results resemble those found for 
Sierpinski-type fractals. At low temperatures, the distributions are highly structured, 
showing discontinuities which increase with the number of steps, in contrast to an intuitive 
picture that would lead to smoothing. We apply the results to the energy transfer in 
disordered systems and study the decay due to trapping. 

Ultrametric spaces (UMS) have seen an upsurge of interest in the last couple of years 
[l-71. Though motivated by recent advances in the theories of spin glasses [l-3,8,9] 
and of computer architecture [ 101, the ideas behind UMS are based on classification 
[ l l]  and are of a broad generality [ll-151. Topologically UMS are so simple as to be 
relegated to exercises in textbooks [13,14]. The new physical aspects of the UMS are 
related to dynamics, the underlying structures being ‘toy models’ for anomalous 
behaviour [ 151. 

In a recent review article on the reaction dynamics in glasses [ 161 we have pointed 
out relaxation aspects which may be related to a UMS picture. The main idea is with 
model transitions in real or phase space through activated jumps over a hierarchical 
system of energy barriers. For certain ranges of parameters the hierarchical structure 
leads to scaling behaviour so that UMS parallel in their dynamic features several aspects 
found for geometrical fractals; indeed one may associate at a given temperature with 
each regular (homogeneous) UMS an ‘effective’ spectral dimension [6, 71. 

An advantage of the temperature dependence of the dynamical properties of UMS 

is that changes in temperature allow us to shift the dimension parameter smoothly 
through all positive values and to study the behaviour in regions around and below unity. 

As model homogeneous fractal systems, the Sierpinski gaskets are in use [ 171; they, 
however, display spectral dimensions d’ between unity and two [18,19] (1 c d ‘ < 2 ) ,  
where d‘= 1 holds for the trivial case of a linear chain (gasket in one-dimensional 
Euclidean space). Structures with d’ < 1 could possibly be envisaged for geometric 
fractals (fractal dimensions d lower than unity are well known, e.g. the Cantor dust 
[17]), but this would call for extensions of the definitions. In contrast, random walks 
on UMS at low temperatures correspond to effective spectral dimensions less than one 
171. 
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In this letter we present several properties of such walks. Interestingly, these walks 
show strikingly different behaviour from the properties found for Sierpinski gaskets 
and for regular lattices. For a large number of jumps the distribution of distinct sites 
visited by the walker attains a comb-like structure, which sharpens with increasing 
number ofjumps n. Intuitively, one would in general expect a smoothing with increasing 
n (in the sense of convergence to a normal law); this is not the case on UMS at low 
temperatures, where a larger number of steps tends to better unveil the underlying 
hierarchical pattern. At higher temperatures, however, a smooth distribution is again 
recovered. These aspects carry over to the relaxation patterns, which show oscillatory 
behaviour in the effective decay rates. Here we present these findings using as an 
example the survival probability of a walker on a UMS on which traps are randomly 
distributed. 

In realistic situations sites in a disordered material, such as a glass, are separated 
by energy barriers, whose height is, in general, random [16]. Taking for simplicity a 
non-quantal picture and identical ground states for all sites, a ‘walker’ (such as an 
impurity, a charge carrier or a localised excitation) needs thermal energy to surmount 
these barriers. A given activation energy allows a walker to vist only a subset (cluster) 
of sites around the starting point, the cluster being separated from the other sites by 
barriers higher than the prescribed activation energy. One may then classify the sites 
through the energy required to reach them [ 113 .  To such a classification corresponds 
an ultrametric space (UMS) [ll-141. 

An example for a UMS is the set of tips of a finite Bethe lattice. Figure 1 shows 
the UMS 2, ; note that only the points on the baseline of the figure belong to the space 
and the structure above the baseline defines connections. A distance between two sites 
may now be defined as being the minimal number of branches one has to walk on the 
tree in order to get from one tip to the other. Such a distance has a physical meaning 
as being proportional to the energy required to overcome the intersite barrier. It is 
straightforward to verify that the distance d ( x ,  y )  so defined satisfies the strong triangle 
inequality [13, 141 

for all sites x, y ,  z of the UMS. Furthermore, specifying a value E for the activation 
energy leads to the partition of the UMS into a set of disjoint clusters, where any two 
points of the same cluster are separated by barriers of energy lower than E and any 
two points belonging to different clusters by barriers higher than E. Here we take the 
barrier heights to be hierarchically distributed for simplicity, so that all consecutive 
energy levels differ by A and assume that the branching ratio z is constant over the 
whole Bethe lattice (in figure 1 z = 3). The UMS considered here are thus homogeneous. 

Figure 1. The ultrametric structure ( U M S )  Z , .  
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An important quantity for describing dynamical aspects is the distribution of the 
number R, of distinct sites visited by a walker in n steps. For instance the survival 
probability of the walker in the presence of randomly distributed traps is [20] 

@, = (exp[-A(R, - 1) l )  (2) 

where A = -In( 1 - p ) ,  with p being the probability that a site is occpuied by a trap and 
where the average is to be taken over all realisations of random walks. 

Even for regular lattices the knowledge of R, is rudimentary and an analytical 
expression for @, exists only in d = 1 [21]. Detailed knowledge is available for S,, 
the mean number of distinct sites visited, i.e. for 

S,  = (R,). (3) 

For S, the marginal dimension is two. Thus, above d = 2 one has asymptotically S, - n, 
whereas below it 

s, - n J / 2  (4) 

holds, with 2 being the spectral dimension for fractals [ 18, 19,221 (2  = d for regular 
lattices). As we have discussed in [7], for UMS a similar picture emerges, with 

y = ( k T / A )  In z =In z/(Ap) ( 5 )  

being the parameter which determines the behaviour of S,. Thus 

for y >  1 
for y <  1.  

It is therefore natural to view 2 y as being an ‘effective’ spectral dimension [6,7], which, 
as indicated in (4), is temperature dependent. 

Serious analytical efforts have revealed characteristics of the full R, distribution 
for regular latices [23,24]. Thus, it is known that for d = 3 the distribution of R, tends 
to a Gaussian, whose normalised form sharpens towards a Dirac 6 distribution for 
n +CO, and the same is expected for d = 2 whereas for d = 1 the normalised R, 
distribution converges to a regular function (proper law). For a detailed picture in 
the full time regime both for regular lattices with d # 1 and also for fractals numerical 
simulations are necessary. 

In previous works [20,22,25,26] we have used simulation calculations to obtain 
via R, the decay laws due to trapping (equation ( 1 ) ) .  An analysis of the R, distribution 
for fractals from numerical simulations has been presented by Angles d’Auriac et al 
[27]. For 2 = 1.365 (Sierpinski gasket embedded in d = 2) they find evidence for the 
convergence of R, towards a proper law and conjecture that similar behaviour holds 
for all d < 2. The R, distributions show an overall smooth shape with a broad maximum 
and a small superimposed structure (see figure 4 of [27]). The structures are reminiscent 
[21] of the findings in d = 1, which, for later convenience, we now recall. 

In figure 2 we present the numerical findings for nearest-neighbour random walks 
on d = 1 .  The curves show the results of some 10 000 realisations of walks and the 
distributions after 10, 100 and 1000 steps. The normalised probability distributions 
p, (x)  are given, where we set x = R,/S,, and where the area under p , ( x )  equals unity. 
With increasing n one observes the emergence of an asymmetrically shaped form with 
a single broad peak. 

What is the situation on UMS? To obtain this information we have performed a 
series of calculations (mostly on Z, ,  2, and Z5),  in which we varied the temperature 
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Figure 2. The normalised probability p , ( x )  of the number R ,  of distinct sites visited after 
n steps plotted in units of x =  Rn/(Rn). The distributions depicted correspond to the 
situation after 10, 100 and 1000 steps for nearest-neighbour random walks on d = 1; n = 10 
is designated by short, n = 100 by long dashes and n = 1000 by full lines. 

parameter P A ,  and hence y (see (4)). In the simulations we let the random walker 
start at an arbitrary origin, all starting sites being equivalent for a homogeneous UMS. 

The walker attemps at fixed time intervals to perform a jump. The barrier heights a 
walker may reach are distributed according to the thermal activation. From an attained 
level the walker is directed randomly to one of the points of the corresponding cluster 
and may therefore land also on the original site. In the simulation we account for 100 
hierarchical levels and thus zlo0 sites are included. 

As a first example we consider in figure 3 a series of random walks on Z , ,  where 
the parameter P A  equals unity, P A  = 1 and hence one has y = 1.1, which corresponds 
to an effective spectral dimension slightly larger than two, d' = 2.2. Again the curves 
p , ( x )  for n = 10,100 and 1000 are presented. With increasing n an almost symmetrical 
shape develops, much reminiscent of a normal distribution, the differences being a 
slightly steeper descent at higher x values (to be contrasted with figure 2, where the 
opposite is the case) and small oscillations in a threefold pattern, which stems from 
having walks on a UMS with z = 3. 

A drastic change occurs for smaller temperatures. Figure 4 presents the change 
which comes about by doubling parameter P A ,  and thus having P A = 2 .  Here the 
curves for n = 100 and 1000 are presented. For n = 1000 practically no trace is left of 
a continuous curve and the distribution (for which an envelope may possibly be 
envisaged for n = 100) disintegrates into a series of spikes, most of which come in 
families of threes, and some of which may be 'genealogically' readily pursued up to 
the fourth generation. Again these threefold aspects are based on having z = 3 (and, 
of course, walks on Z5 show a fivefold family structure). Note that for Z3 P A = 2  
implies d = 1.1 and hence we are above the value d = 1 of figure 2. Thus, although 
S,  = ( R , )  is well behaved and ai is relatively well behaved (and thus they lend weight 
to the identification of 2 y with d )  the R, distributions are in no way well characterised 
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Figure 3. Same as in figure 2, where the ra?dom walk takes place over the UMS Z ,  and 
the temperature parameter P A =  1 ( y  = 1.1, d =2.2). 

Q" 

X 

Figure 4. Same as !n figure 2, where the random walk takes place over the UMS Z ,  and 
P A =  2 ( y  =0.55, d = 1.1). For clarity only the situation after 100 and 1000 steps is 
presented. 

by their first moments for large P A  (small T ) .  The fascinating aspect of the matter 
(at least to us) is the emergence of the structured picture at n = 1000 from a quite 
shapeless form at n = 10; the increase in the number of steps sharpens our possibility 
of observation and unveils the underlying UMS, while in general, under usual conditions, 
on regular lattices a global smoothing is observed with increasing n. 
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For smaller values of y (we have also used p A = 3  and 4) and hence y=O.37 
(2  = 0.74) and y = 0.27 (2: 0.54) the main peaks increase at the cost of the background, 
so that for n = 1000 and d = 0.54 one is left in practice with only the equidistant four 
main peaks of figure 4, where the leftmost one is considerably increased compared to 
the other three. 

Let us now follow the consequences of these R, distributions in the case of trapping 
(equation (2)).  As we have discussed in the context of regular lattices [20], there one 
could, at least in the short-time regime, use a cumulant expansion and approximate 
@, through 

where Kj,, are the cumulants (semi-invariants) of the R, distribution and are related 
to its moments. It is known that for regular lattices (7 )  is poor at extremely long times, 
since asymptotically a non-analytical dependence on A obtains in general in the 
exponent. Indeed, for UMS the corresponding analysis leads to the form 

1 (8) @, - exp( - CA Y / ( ? ' + l j n  I / (  Y + l )  

akin to a simlar form for fractals [25,29]. Equation (7) is quite useful at small and 
moderately large n in the three-dimensional case [20]. The domain of validity of (7) 
is very restricted, however, for d = 1 [21]. The same also holds, as we have observed, 
for UMS, when the parameter 2y  approaches unity [7] due to the poor representation 
of the R, distribution through its first moments. Hence an expansion in terms of 
cumulants is quite ineffective as an approximation method when y approaches even 
lower values, y < 0.5. 

In such cases we found an analytic lower limit to @, to be the appropriate tool. 
As we will show elsewhere 

3)  

@,a 1 (&J;-&J;-l)(l-p)zm-l 
m = O  

(9) 

where 0, = 1 - R m ( z  - l ) / ( z  - R )  and R = exp(-pA). We use the right-hand side of 
(9) as an approximation to @,. This approximation depends on how well a walker 
visits all sites on a UMS level before proceeding to the next level (compact exploration 
[25,26,29]) and works better for low y values. 

To display our findings we present in figure 5 the decay due to trapping on the 
UMS 5 ,  when the parameter pA = 4 and where one hence has y = 0.27 (2  = 0.54). The 
results of simulations which are obtained when the concentrations of traps in (2) are 
p = 0.03, 0.1, 0.3 and 0.5 are shown. Indicated are both the decay forms which follow 
from the use of the cumulant expansion (equation (7)) with N = 1 and N = 2 as well 
as the expressions giving the lower limit (equation (9)). While in the initial decay 
region, where 0.1 S (on s 1, the short-time cumulant expression a2,, works well, at 
longer times the cumulant expressions become inadequate, whereas the approximating 
quality of the lower bound, equation (9), increases. A similar finding also holds for 
the relaxation forms for @ A  = 2, as presented in figure 5 of [7]; there Q2,, approximates 
well only for the first order of magnitude of the decay. On the other hand, an analysis 
of the data shows the lower limit to become a reasonable approximation at longer 
times (although not so good as in figure 5 here). An interesting feature evident 
from figure 5 is the appearance of piecewise quasi-exponential regions, due to large 
differences in the microscopic decay rates. The situation is reminiscent of the 
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Figure 5. Survival probability of a random walker on the UMS 2, in the presence of 
randomly distributed traps. The probability that UMS sites are traps is given by p and 
equals 0.03,0.1,0.3 and 0.5, respectively. The results of the simulations (dots), the cumulant 
expansions @,,n and @2,n (equation (7) )  (full curves) and the lower bound expression 
(equation (9)) (broken curve) are displayed. 

findings in relaxation patterns based on direct transfer processes in low-dimensional 
spaces [30] but we postpone an extended discussion of this feature here. 

Summarising, random walks on fractals and UMS show, besides remarkable parallels, 
interesting differences in their behaviour related to reactions. We thus reiterate our 
conviction that such aspects may show up in experiments which study relaxation in 
disordered systems, when monitored in an extended range of temperatures. At low 
temperatures the underlying UMS structure (when present) will become visible and 
multiple step processes will not smooth out but enhance the observable structured 
pattern. 

The authors are grateful for discussions with Professors K Dressler and D Haarer. 
The support of the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen 
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